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Abstract. Mesoscopic transport through an ultrasmall quantum dot (QD) coupled to two single-wall carbon
nanotube (SWCN) leads under microwave fields (MWFs) is investigated by employing the nonequilibrium
Green’s function (NGF) technique. The charging energy and junction capacitances influence the output
characteristics sensitively. The MWFs applied on the leads and gate induce novel photon-assisted tun-
nelling, strongly associated with the density of states (DOS) of the SWCN leads. The SWCN leads act as
quantum wires, and the compound effect induces nonlinear current behavior and resonant tunnelling in a
larger region of energy scale. Negative differential conductance (NDC) is clearly observed, as the source-
drain junction capacitances CL, and CR are large enough. The multi-resonant NDC oscillation appears
due to the charging and photon-electron pumping effects associated with the contribution of multi-channel
quantum wires.

PACS. 73.40.-c Electronic transport in interface structures – 73.63.Fg Nanotubes – 73.61.Wp Fullerenes
and related materials – 73.22.-f Electronic structure of nanoscale materials: clusters, nanoparticles,
nanotubes, and nanocrystals

1 Introduction

With the development of nanotechnology, the fabrication
of various nano-devices becomes possible, and it stimu-
lates the research activities in the nanometer scale both
in theoretical and experimental aspects. The main effect
of nano-systems at low temperature is the quantum be-
havior of the confined electrons. A quantum dot (QD) is
one of such devices with three dimensions being confined
in the nanometer regime. The electron energy of a QD is
discrete, and the density of state (DOS) exhibits distinct
difference from other nano-devices. Coherent tunnelling
reveals another major behavior of such mesoscopic sys-
tems since the sizes of the devices are smaller than the
electron coherent length. As a QD is extremely small, the
Coulomb interaction is very important, and the charging-
discharging behavior results in novel resonant tunnelling
phenomena [1–6].

Single-wall carbon nanotubes (SWCNs) are ideal ma-
terials and samples for investigation because of their
unique features related to electronics, such as the
metal-semiconductor transition [7–9]. The quasi-one-
dimensional construction exhibits quantization in the
transversal direction, while it is continuous in the longitu-
dinal direction. This provides new quantum wires for test-
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ing some existing mesoscopic theoretical results. Metallic
quantum wires can be employed as the interconnects for
future nano-electronics, while the semiconducting SWCNs
can be used as the quantum devices. The Schottky bar-
rier in metal-semiconductor junctions [10,11], the diode ef-
fect [12] and the field effect transistor [13,14] all make car-
bon nanotubes (CNs) excellent prospective materials for
future electronic devices. Consequently, mesoscopic trans-
port through CN based devices presents a new investiga-
tion paradigm [15–18].

Photon-assisted tunnelling has been of recurring in-
terest in the mesoscopic transport regime since the the-
oretical work of Bruder et al. shown in reference [2].
They derived a non-Markovian master equation to
study the nonlinear time-dependent transport in small
semiconductor QD. The many-body nonequilibrium dis-
tribution functions of the QD have been calculated. By
employing Floquet theory [19], the quantum mechanical
calculation performed by Holthaus has displayed that the
miniband of quasienergies collapses at singular values of
the ac fields. Reference [20] has reported an experimen-
tal investigation of electrical transport in the sequential
resonant tunnelling regime of superlattices submitted to
an intense terahertz electric field. They showed that far-
infrared radiation introduces new photon-mediated con-
duction channels in the devices. The scattering-matrix
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approach on phase-coherent transport was generalized to
nonlinear ac transport by Pedersen and Büttiker [21].
They presented a theory of photon-assisted electron trans-
port, in which charge and current conservation are satis-
fied for all Fourier components of the current. The ac Stark
effect and photon-assisted mesoscopic transport through
toroidal carbon nanotube (TCN) based devices have been
investigated by one of the authors et al. in reference [22].
The ac flux enhances the energy gap, and the DOS ex-
hibits photon absorption and emission. The side peaks
and current suppressions result from the quantum nature
of the TCN and applied MWFs.

In this paper, we investigate a system with an ultra-
small quantum dot connected to two SWCN leads, with
the gate capacitively coupled to the QD. The SWCN leads
act as quantum wires whose electronic structures make im-
portant contributions to the output current-voltage char-
acteristics. The Coulomb interaction and the capacitances
of junctions play significant roles in the mesoscopic trans-
port. This system is quite different from the one without
Coulomb interaction and the leads being normal metals.
Since CNs have special electronic structures, the DOS in-
duces specific effects in the resultant electronic properties.
Therefore, the usual wide-band limit method of calcula-
tion is invalid. We are interested in the case of double
coherent microwave fields applied to the system through
its gate and source-drain terminals. The applied ac fields
induce charging-discharging procedure, and the capaci-
tances of junctions and QD dominate the actual trans-
port. The information of external MWFs is transferred to
the tunnelling current and differential conductance. Non-
linear photon-assisted tunnelling and negative differential
conductance (NDC) are clearly exhibited. We employ the
nonequilibrium Green’s function (NGF) technique to de-
scribe the transport formulas. The tight-binding model
is employed for calculating electron transport through
the CN systems where the Coulomb interaction is ne-
glected [23,24]. The tight-binding calculation is relatively
simple compared with the first principles calculation [25].
On the other hand, the theoretical prediction [26,27] of
Luttinger liquid behavior in a SWCN at low energy scale
has been verified in transport experiments [28]. However,
the tight-binding calculation can provide the main prop-
erties of CN systems, such as the electron structure, lo-
cal density of states, and electron transport. Many scan-
ning tunnelling spectroscopic results are fully interpreted
in terms of the independent electron model [29]. We use
the tight-binding model to describe the electronic proper-
ties of the SWCN leads, which can help us understand the
main physical feature of the mesoscopic transport prob-
lem. Section 2 addresses the model formalism and current
formula derivation. Section 3 is devoted to the numerical
calculation and result analysis. Brief concluding remarks
are presented in the last section.

2 Model and formalism

Our system is composed of three parts: the ultra-small QD
being coupled to two SWCN leads by tunnelling junctions

with capacitances CL and CR. A metallic gate is contacted
to the central QD with capacitance Cg. The SWCN leads
act as equilibrium reservoirs which satisfy the grand
canonical ensembles. External MWFs are applied to the
two leads and the gate. The external potential differences
induced by the MWFs are expressed by different angular
frequencies ωj . The energy spectra of the two leads are
modified as εδγ,kσ(t) = ε0

δγ,kσ +
∑2

j=1 ∆γj cosωjt, for γ ∈
{L, R}, where ε0

δγ,kσ are the isolated energy of CN leads.
The gate potential is determined by the time-dependent
potential as eVg(t) = µg +

∑2
j=1 ∆gj cosωjt, where µg is

the chemical potential of gate in the absence of external
field. The total Hamiltonian is therefore given by the sum-
mation of the sub-Hamiltonians of the two leads, the QD,
and tunnelling terms as

H(t) =
∑

δγkσ

εδγ,kσ(t)c†δγ,kσcδγ,kσ +
∑

�σ

E�σn�σ

+ Ec

∑

�σ

n�σ[n�σ̄ + 2n0(t)] +
∑

δγk�σ

[
Rγc†δγ,kσd�σ

+ h.c.
]
, (1)

where n�σ = d†�σd�σ. The operators c†δγ,kσ(cδγ,kσ), and
d†�σ(d�σ) are the creation (annihilation) operators of elec-
tron in the two leads and the central QD, respectively.
The spin subscript σ in the Hamiltonian takes the value
σ = ±1, which denotes the situation for spin-up ↑, and
spin-down ↓. Rγ is the interaction strength of electrons be-
tween the γth lead and the central QD. The ultrasmall QD
is approximated by the Coulomb-blockade model [30],
which is somewhat like the Anderson model. Ec = e2/2C
is the charging energy with C =

∑
i=L,R,g Ci. In the

Hamiltonian (1), en0(t) =
∑

i=L,R,g CiVi(t) is related to
the polarization charges produced by the time-dependent
voltages of the left and right leads eVγ(t) = µγ +
∑2

j=1 ∆γj cosωjt, as well as the time-dependent gate volt-
age eVg(t) applied to the QD through the capacitance Cg.
This model is used by Bruder and Schoeller to investigate
the charging effects in the ultrasmall QD coupled to nor-
mal metal leads [2]. The difference of our system is that
the ultrasmall QD is coupled to metallic SWCN leads. We
take the chemical potential of the right lead as the refer-
ence of energy measurement.

In order to handle the problem conveniently, we
make the gauge transformation Ψ(t) = Û(t)Ψ̃(t) in the
Schrödinger equation, where the unitary operator is de-
fined by

Û(t) = exp





− i

�

2∑

j=1

[
∑

δγkσ

(
∆γj /ωj

)
c†δγ,kσcδγ,kσ

+
∑

�σ

(
∆̃j/ωj

)
d†�σd�σ

]

sin ωjt





. (2)

In the unitary operator, we have defined the relation ∆̃j =∑
i=L,R,g Ci∆ij/C for writing the formula more concisely.
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The Hamiltonian of the system is transformed to the new
form after the gauge transformation

H̄(t) =
∑

δγkσ

ε0
δγ,kσc†δγ,kσcδγ,kσ +

∑

�σ

E�σn�σ

+ Ec

∑

�σ

n�σ



n�σ̄ +
2
e2

∑

i=L,R,g

Ciµi





+
∑

δγk�σ

[
R̄γ(t)c†δγ,kσd�σ + h.c.

]
. (3)

Through the transformation, the time-dependent ener-
gies in the subsystems become time-independent ones,
while the interaction strength Rγ is transformed to the
time-dependent one

R̄γ(t) = Rγ exp






i

�

2∑

j=1

[(
∆γj − ∆̃j

)
/ωj

]
sin ωjt





.

The tunnelling current can be derived by employ-
ing the NGF technique, the continuity equation and
Heisenberg equation. Following the approach of Jauho,
Wingreen, and Meir, we can express the tunnelling cur-
rent by the Green’s functions of QD GX

�σ,�′σ′(t, t′), (X ∈
{r, a, <}). The time-dependent tunnelling current in the
left lead is determined by the formula [31]

IL = −2e

�

∫ t

−∞
dt1

∫
dε

2π
Im

{
∑

��′σσ′
Γ L

σ (ε, t1, t)e−
i
�

ε(t1−t)

×
[
Gr

�σ,�′σ′ (t, t1)fL(ε) + G<
�σ,�′σ′(t, t1)

]
}

, (4)

where we have denoted the quantity Γ γ
σ (ε, t1, t) =

2πργσ(ε)R̄γ(t)R̄∗
γ(t1). The DOS of the γth CN lead is de-

fined by ργσ(ε) =
∑

kδ δ(ε − ε0
δγ,kσ). In deriving the tun-

nelling current formula, the Green’s function of isolated
CN lead

g
r(a)
δγ,kσ(t1, t2) = ∓ i

�
θ(±t1 ∓ t2) exp

[

− i

�
ε0

δγ,kσ(t1 − t2)
]

is employed for describing the self-energies of the leads.
The DOS can be determined by the Fourier trans-
formed Green’s function of isolated CN lead as ργσ(ε) =
−∑kδ Imgr

δγ,kσ(ε)/π, where gr
δγ,kσ(ε) = 1/(ε − ε0

δγ,kσ +
iη).

We employ the equation of motion method to derive
the Green’s function [32]. The retarded Green’s function
of the isolated QD is defined as

gr
�σ,�′σ′(t, t′) = − i

�
θ(t − t′) exp

[

− i

�
ξ�σ(t − t′)

]

δ��′δσσ′ ,

where ξ�σ = E�σ +
∑

i=L,R,g Ciµi/C. The Green’s func-
tion of the coupled QD can be derived from the Dyson-

like equation

Gr
�σ,�′σ′(t, t′) =

∫

dt1g
r
�σ,�σ(t, t1)g̃r

�σ,�′σ′(t1, t′)

+
∑

�′′

∫∫

dt1dt2g
r
�σ,�σ(t, t1)Σ̃r

�σ(t1, t2)

× Gr
�′′σ,�′σ′(t2, t′) + gr

�σ,�′σ′(t, t′). (5)

In the Dyson-like equation above we have defined the
Green’s function

g̃r
�σ,�′σ′ (t, t′) = − i

�
θ(t − t′) exp

[

− i

�
(ξ�σ + 2Ec)(t − t′)

]

× 2Ec〈n�σ̄〉δ��′δσσ′ ,

where the charging energy Ec and occupation number of
electron in the QD 〈n�σ̄〉 are involved. The self-energy of
the system is defined as

Σ̃X
�σ(t, t′) =

∑

γ

[

ΣX
γσ(t, t′) +

∫

dt1g̃
r
�σ,�σ(t, t1)ΣX

γσ(t1, t′)
]

,

in which the contribution of Coulomb interaction is in-
cluded. In the derivation of equation (5), the mean-field
approximation is used to truncate the equation chain in
order to obtain the closed solution [32]. The self-energy
ΣX

γσ(t, t′) =
∑

δk R̄∗
γ(t)gX

δγ,kσ(t, t′)R̄γ(t′), with X ∈
{r, a, <}, represents the interaction of the leads with
the QD. Similarly, the Keldysh Green’s function can be
derived from the integral equation

G<
�σ,�′σ′(t, t′) =

∑

�′′

∫∫

dt1dt2g
r
�σ,�σ(t, t1)

×
[
Σ̃r

�σ(t1, t2)G<
�′′σ,�′σ′(t2, t′)

+ Σ̃<
�σ(t1, t2)Ga

�′′σ,�′σ′(t2, t′)
]
. (6)

In the Keldysh self-energy Σ̃<
�σ(t1, t2), the Keldysh Green’s

function of the γth CN lead is given by

g<
δγ,kσ(t, t′) =

i

�
f
(
ε0

δγ,kσ

)
exp

[

− i

�
ε0

δγ,kσ(t − t′)
]

,

where f(ε0
δγ,kσ) is the Fermi distribution function of the

γth lead defined as fγ(ε) = 1/{exp[(ε − µγ)/KBT ] + 1}.
The Green’s functions of the coupled QD can be obtained
by solving equations (5) and (6). Performing the Fourier
transformation over equation (5), one can find the re-
tarded Green’s function of coupled QD as

Gr
�σ,�′σ′(ε) =

gr
�σ(ε) [1 + 2Ec〈n�σ̄〉gr

�σ(ε̃)] δ��′δσσ′

1 − gr
�σ(ε) [1 + 2Ec〈n�σ̄〉gr

�σ(ε̃)] Σ̃r(ε)
, (7)

where ε̃ = ε − 2Ec. The Fourier transformed self-
energy Σ̃r(ε) is determined by

Σ̃r(ε) =
∑

δγk

∑

p1,p2,p3

|Rγ |2Jp1(Λ1)Jp2(Λ2)Jp3(Λ1)

× Jp2+(p1−p3)q(Λ2)gr
δγ,kσ (ε − p1�ω1 − p2�ω2) ,
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where q = ω1/ω2, and gr
�σ(ε) = 1/(ε − ξ�σ + iη) is the

Fourier transformation of the isolated QD. We have em-
ployed the property of a Bessel function exp(iΛj sinωt) =∑

p Jp(Λj) exp(ipωt), where Λj is the magnitude differ-
ence of the ac fields defined by Λj = (∆γj − ∆̃j)/�ωj,
(j = 1, 2). The Keldysh Green’s function can be derived
similarly to be expressed as the product of the retarded
and advanced Green’s functions of the QD

G<
�σ,�σ(ε) = i

∑

p1,p2,p3

∑

γ

Γ̃ γ
p1,p2,p3

(ε)|Gr
�σ,�σ(ε)|2

× fγ (ε − p1�ω1 − p2�ω2) . (8)

In the above formula, we have denoted the line-width func-
tion of the γth lead in the presence of ac fields as

Γ̃ γ
p1,p2,p3

(ε) = Γ γ
σ (ε − p1�ω1 − p2�ω2)Jp1(Λ1)

× Jp2(Λ2)Jp3 (Λ1)Jp2+(p1−p3)q(Λ2),

where Γ γ
σ (ε) is the line-width of the γth lead in the absence

of ac fields defined by Γ γ
σ (ε) = 2πργσ(ε)|Rγ |2. The occu-

pation number has to be calculated through the equation
self-consistently

〈n�σ〉 =
1
2π

Im
∫

dεG<
�σ,�σ(ε). (9)

Taking a time-average over the tunnelling current for-
mula (4), we can obtain the tunnelling current through
the QD by substituting the Green’s functions given in
equations (7) and (8)

I =
e

h

∑

�σ

∑

p1,p2,p3

∑

p′
1,p′

2,p′
3

∫

dεΓ̃ L
p1,p2,p3

(ε)Γ̃ R
p′
1,p′

2,p′
3
(ε)

× |Gr
�σ,�σ(ε)|2 [fL (ε − p1�ω1 − p2�ω2)

−fR (ε − p′1�ω1 − p′2�ω2)] . (10)

Due to the current conservation, the magnitudes of the
tunnelling current in different parts are equal, i.e., I =
IL. This is the Landauer-Büttiker-like formula in the
presence of external ac fields [32]. Equation (10) con-
tains all the mesoscopic transport information of the sys-
tem. The detailed tunnelling feature is determined by
the structure of QD, the charging energy Ec, the struc-
tures of the CN leads, the junction capacitances CL, CR

and Cg, the source-drain bias and gate voltage, the exter-
nal MWFs and the coupling strengths. The temperature
dependence is associated with the Fermi distribution func-
tion. We assume the junction capacitances are known, as
is treated in references [2] and [6]. The Green’s functions
involve the occupation number 〈n�σ〉, so that we solve the
Green’s function self-consistently. As Λj = 0, the tun-
nelling current (10) reduces to the Landauer-Büttiker-like
formula [33] in the absence of the external MWFs. The in-
teraction strengths of the external MWFs Λj are deter-
mined directly by their magnitudes of potential differences
and frequencies. The mesoscopic transport is similar to
the situation in the absence of external MWFs when

∆γj = ∆̃j , even if each of the external fields is not zero.
The resonant peaks of the QD without connecting to
CN leads are located at ε = ξ�σ + p1�ω1 + p2�ω2, and
ε = ξ�σ + 2Ec + p1�ω1 + p2�ω2, (p1, p2 = 0, 1, 2, ...). How-
ever, as the QD is connected to the CN leads, new resonant
peaks arise due to the influences of the quantum wires.

3 Numerical calculation

In this section, we perform the numerical calculation on
the tunnelling current and differential conductance of the
system at zero temperature. Armchair CNs are chosen as
the leads for connecting the QD. This kind of material pos-
sesses metallic properties, and it acts as a good conductor
for electron transport. Similar behavior is also displayed
in the other metallic zigzag CN leads. In the tight-binding
approximation, the energy of armchair (n,n) CN can be
derived as [34]

ε
(0)
δγ,kσ = δγ0

{

1 + 4 cos
(

aky

2

)

cos

(√
3akx

2

)

+ 4 cos2
(

aky

2

)} 1
2

, (11)

where
√

3akx/2 = πq/n, q = 1, 2, . . . , 2n, δ = ±, and
γ0 = 3.033 eV. The energy in the transversal direction is
quantized, while in the longitudinal direction it is not re-
stricted. As the electrodes are connected to the QD, the
tunneling current is formed by applying different chemi-
cal potentials to the leads. Without loss of generality, we
only present the calculation for the single-level QD by set-
ting E�σ = 0 for simplification. At zero temperature the
current formula (10) is reduced to

I =
e

h

∑

�σ

∑

p1,p2,p3

∑

p′
1,p′

2,p′
3

∫ eV +p1�ω1+p2�ω2

p′
1�ω1+p′

2�ω2

dε

× Γ̃ L
p1,p2,p3

(ε)Γ̃ R
p′
1,p′

2,p′
3
(ε)|Gr

�σ,�σ(ε)|2, (12)

where we have set the chemical potential of the right lead
at zero. The concrete structure of QD possesses specific
charging energy which denotes the interaction strength
of electrons in the QD. We choose the charging energy
to be Ec = 3.125 meV, which is in the same order of
the experimentally observed value in reference [35]. For
the weakly coupled system, the coupling strengthens be-
tween the two armchair CN leads and QD are chosen
as |RL| = |RR| = 24.5 meV. We consider the situation
that the double coherent external MWFs are located in
the frequency region 1011 Hz, which can be achieved ex-
perimentally. In particular, we consider the fields with
the frequency 4.78 × 1011 Hz, whose photon energies are
�ω1 = �ω2 = 2.0 meV. The transport features change sen-
sitively with respect to the ratio of CL, CR and Cg to the
total capacitance C. We perform the numerical calcula-
tions to show the I − V characteristics, differential con-
ductance, and the current versus gate voltage for the two
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Fig. 1. The occupation number 〈n〉 and current I versus source-drain bias V as eVg = 0.002γ0. Diagrams (a), (b) correspond
to R = 0.1, while diagrams (c), (d) correspond to R = 0.4, respectively. The dotted, dashed and solid curves are associated
with (1) Λ1 = Λ2 = 0; (2) Λ1 = 0,Λ2 = 0.8; and (3) Λ1 = Λ2 = 0.8, respectively.

cases as CL/C = CR/C = 0.1 and CL/C = CR/C = 0.4
separately. We take γ0 as the energy scale for all of the en-
ergy quantities. The conductance is scaled by G0 = 2e2/h,
and the current is scaled by I0 = 2eγ0/h. The CN leads are
chosen as the armchair (9,9) SWCNs, whose DOS struc-
ture can be found in reference [34].

3.1 The case of CL/C = CR/C = 0.1

In this subsection, we discuss the transport properties for
the case when R = CL/C = CR/C = 0.1. In Figures 1a
and b, we display the occupation number of electron 〈n〉
and I−V characteristics versus the source-drain bias eV as
eVg = 0.002γ0, respectively. The dotted, dashed and solid
curves are associated with the system in the absence, in
the presence of single, and double MWFs. When there is
no external MWFs, the occupation number 〈n〉 increases
with respect to the voltage to the saturate value 〈n〉 ≈
0.48. An obvious step emerges as the source-drain bias
increases to eV ≈ 2Ec, which is the Coulomb-blockade
effect. When double MWFs are applied to the system,
the occupation number shifts. As eV is positively large
enough, the larger saturate value 0.5 (solid curve) is
reached compared with the case as Λj = 0. However, the
applied MWFs smear the step of occupation number at
eV ≈ 2Ec. We present the I−V characteristics of the case
in diagram (b). Similar to the occupation number shown
in (a), the main step located at eV ≈ 2Ec is observed in
the absence of MWFs (dotted curve). This signifies that
a new channel is open at eV ≈ 2Ec for electrons to trans-
port through. This channel originates from the Coulomb
interaction. As the QD is large, the charging energy is

small enough to be neglected, and hence this channel dis-
appears. As the MWFs are applied to the system, one ob-
serves that the main step caused by the charging energy is
smeared. The contribution of a single applied field is ob-
served to be located in the intermediate of the two cases
with Λj = 0 and Λj = 0.8, (j = 1, 2). The smearing of the
Coulomb-blockade step by the applied double MWFs is as-
sociated with the photon-electron pumping effect. As the
source-drain bias is located at the Coulomb-blockade re-
gion, the charging energy acts as a threshold to resist the
electron tunnelling. The applied double MWFs provide
enough energy for electrons to overcome the threshold.

Figure 2 shows the differential conductance dI/dV ver-
sus eV as Λj = 0 and Λj = 0.8, (j = 1, 2), respec-
tively. The diagrams (a) and (b) are related to the case
as R = 0.1. In the absence of MWFs, the differential con-
ductance displays two cluster resonances as shown in di-
agram (a). These cluster resonances are associated with
the abrupt changes around the current step. The res-
onant peaks of the differential conductance also reveal
the channels of CN quantum wires. The maximum dif-
ferential conductance is near G0, which indicates ideal
channel conductance. When the double MWFs are ap-
plied, the photon-assisted tunnelling is strongly depen-
dent on the magnitude of the applied fields Λj as shown
in diagram (b). The resonant peaks are split further, and
the magnitude of differential conductance is reduced. The
novel peaks in the dI/dV curve are associated with the
mini steps and side-band induced by the MWFs in solid
curve of Figure 1b. The resonant peaks display novel chan-
nels for electrons to tunnel in a wider region of volt-
age. The negative differential conductance (NDC) emerges
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Fig. 3. The current I and differential conductance dI/dV versus the gate voltage Vg as eV = 0.003γ0. Diagrams (a), (b), (c)
and (d) are associated with the case for R = 0.1, while diagrams (e), (f), (g) and (h) are associated with the case for R = 0.4.
In diagrams (a) and (e), the dotted, dashed and solid curves correspond to (1) Λ1 = Λ2 = 0; (2) Λ1 = 0, Λ2 = 0.8; and (3)
Λ1 = Λ2 = 0.8, respectively. The diagrams (b) and (f) correspond to Λ1 = Λ2 = 0; (c), (g) correspond to Λ1 = 0, Λ2 = 0.8; (d),
(h) correspond to Λ1 = Λ2 = 0.8, respectively.

at eV = 0.0064γ0, and arises from the photon-electron
pumping effect in the capacitively coupled system.

The tunnelling current versus gate voltage is illus-
trated in Figure 3a as eV = 0.003γ0. In the absence of
external MWFs, there exist three peaks located on the
current plateau. The central peak is higher than the side
peaks. The side peaks arise from the charging energy. The
peaks are suppressed and smeared by applying the dou-

ble external MWFs. Some small resonant peaks appear
due to the splitting of the original peaks on the current
plateau. The influence of single MWF applied to the sys-
tem is also presented for comparison. The splitting and
smear of resonant peaks of current versus gate voltage can
be displayed explicitly by the curves of dI/dVg shown in
diagrams (b), (c) and (d) of Figure 3. The fierce variations
of dI/dVg correspond to the resonant peaks and valleys of
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I − Vg curves in diagram (a). The suppression and smear
of the resonant peaks of current in diagram (a) can be
understood as the external MWFs splitting the original
current peaks, and the heights of peaks are suppressed
correspondingly. Since the splitting causes the side peaks
to form side multi-peaks, the split peaks combine with the
original ones to form a new configuration of current reso-
nance. The contribution of the multi-channel CN leads
is contained in the rapid vibration of dI/dVg. We ob-
serve that there exists distinctly different influences on
the mesoscopic transport between the single MWF and
double MWFs applied CN-QD system.

3.2 The case of CL/C = CR/C = 0.4

In this subsection, we investigate the case when R =
CL/C = CR/C = 0.4. The occupation number and cur-
rent versus source-drain bias eV are shown in Figures 1c,
and d as eVg = 0.002γ0. Compared with the case dis-
cussed in the subsection A as R = 0.1, one observes that
the transport behavior is quite different between the two
cases as R = 0.4 and R = 0.1. The occupation number de-
creases to its minimum value and then increases to reach
its saturation value as the source-drain bias eV varies from
the negative region to the positive region. There are sev-
eral steps in the occupation number as the MWFs are
removed. The main steps are associated with the charg-
ing energy Ec. The capacitances of the junctions have a
major effect on the new configuration of occupation num-
ber. As the external MWFs are applied to the system, the
current is modified by introducing new steps and peaks.
The valley of the 〈n〉 curve is elevated much higher by
the external fields. Correspondingly, the I − V character-
istics are strongly modified due to the applied MWFs in
this case. The small steps on the right side of the curve
change to small peaks on the curve, and the main steps are
smeared shown in diagram (d). Obviously, the I−V char-
acteristics are quite different from the one shown in sub-
section A. This signifies that as the junction capacitances
are large enough, the charging effect can cause novel tun-
nelling behavior.

The differential conductance versus source-drain bias
is shown in Figures 2c and d associated with Λj = 0 and
Λj = 0.8, (j = 1, 2), respectively. As the magnitude of
voltage V is large, new resonant peaks and NDC appear.
This indicates that the junction capacitances take impor-
tant roles in the conduction. The charging effect causes
electrons to pile in the junctions, and the source-drain
bias is involved in the tunnelling coefficient. When the
MWFs are applied, the resonant peaks are split further
to form new configurations of differential conductance.
The central region of the conductance is suppressed, how-
ever, many significant NDC resonant peaks and valleys
are produced as the magnitude of source-drain bias is
large. The NDC appears in both the positive and negative
regimes of eV . Compared with the situation of R = 0.1,
the case of R = 0.4 contains multi-resonances of NDC.
The experimental observation of NDC in boron-exposed
silicon diode was reported by Lyo and Avouris [36], where
single-resonance of NDC is displayed. NDC is the essen-

tial property for allowing fast switching in certain types
of electronic devices.

The current and differential conductance versus gate
voltage are exhibited in Figures 3e, f, g and h as eV =
0.003γ0. The peaks of resonant tunnelling current appear
with similar forms as those in the case when R = 0.1, but
the main resonant peak of the case R = 0.4 is much wider
than that of the case R = 0.1. This implies that by increas-
ing the capacitance ratio R, one can obtain wide-band
resonant tunnelling current. The curves of dI/dVg shown
in f, g and h possess some similarities as the case for
R = 0.1. One can find the non-trivial differences of the
dI/dVg curves from the two cases. The increasing of ca-
pacitance ratio corresponds to stretch the differential con-
ductance region with respect to eVg. The differential con-
ductance oscillation is also suppressed due to increasing
the ratio R. The multi-resonance of the differential con-
ductance versus gate voltage implies the contribution of
multi-channel quantum wires of the leads and the applied
MWFs.

4 Concluding remarks

We have investigated the mesoscopic transport through
the system with an ultrasmall QD coupled to two
CN leads. The CN leads act as quantum wires which
provide multi-channels for electron to tunnel. The spe-
cific DOS structures of CN leads play important roles
in the tunnelling behavior. The restriction of electrons
in quasi-one-dimensional region causes the quantiza-
tion of electron energy in the transversal direction of
movement. The usual wide-band limit approximation in
numerical calculation is invalid, and the contribution of
multi-channel quantum wires results in novel resonant
transport behaviors. The output characteristics depend
sensitively on the charging energy in the central QD,
and the junction capacitances CL, CR and Cg. A new
channel is opened near eV ≈ 2Ec originating from the
Coulomb interaction for electrons to transport through.
Photon-assisted tunnelling is strongly dependent on the
magnitude of the applied fields. The current resonant
peaks are suppressed and smeared to form new appearance
by applying external MWFs. The applied double MWFs
on the leads and gate can smear the current step caused
by the charging energy Ec. This current smear by the
ac fields can be attributed to the photon-electron pump-
ing effect. The NDC appears due to the photon-electron
pumping effect associated with the charging-discharging
of electrons in the capacitively connected QD system.
This effect is enhanced by increasing the capacitance
ratio CL/C = CR/C. Therefore, we can adjust the pa-
rameters such as terminal bias eV , gate voltage Vg, the
capacitance ratio, and external MWFs to obtain desired
tunnelling characteristics of the definite CN-QD system.

This work was supported by the National Natural Science
Foundation of China under the Grant No. 10375007, the
Project-sponsored by SRF for ROCS, SEM, and by a RGC
grant from the SAR Government of Hong Kong under Grant
No. HKU 7032/03P.



292 The European Physical Journal B

References

1. Single Charge Tunneling, edited by H. Grabert, M.
Devoret, NATO ASI Ser. B, Vol. 294 (Plenum, New York,
1991)

2. C. Bruder, H. Schoeller, Phys. Rev. Lett. 72, 1076 (1994);
C. Bruder, R. Fazio, H. Schoeller, Phys. Rev. Lett. 76, 114
(1996)

3. C.A. Stafford, Phys. Rev. Lett. 77, 2770 (1996)
4. M.A. Kastner, Rev. Mod. Phys. 64, 849 (1992)
5. Y. Meir, N.S. Wingreen, P.A. Lee, Phys. Rev. Lett. 66,

3048 (1991)
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20. P.S.S. Guimarães et al., Phys. Rev. Lett. 70, 3792 (1993)
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